Machine learning:
 SVM, ANN, ensembles, active learning, practical issues

Agenda

- SVM
- Neural networks
- Ensemble methods
- Active learning
- Practical issues

Logistic Regression

- Probabilistic linear classifier
- Logistic (sigmoid) function $f(x)=1 /\left(1+e^{-x}\right)$
- Where $x=w_{0}+\sum_{i} w_{i} x_{i}$
- $f(x)=P(C=1 \mid X)$
- $w_{0}+\sum_{i} w_{i} X_{i}=0$ defines a hyperplane where $P(C=1 \mid X)=0.5$ and $P(C=0 \mid X)=0.5$ and $w_{0}+\sum_{i} w_{i} x_{i}$ is proportional to the distance from the hyperplane
- Learning
- no closed form solution - optimization, e.g., with gradient descent
- definition of a cost function (several options); -y $\log \left(y^{\prime}\right)-(1-y) \log \left(1-y^{\prime}\right) ; y$ in $\{0,1\}$
- updating of weights (according to optimization results); $\mathrm{w}_{\mathrm{j}}=\mathrm{w}_{\mathrm{j}}-\alpha \sum_{\mathrm{i}}\left(\mathrm{y}_{\mathrm{i}}^{\prime}-\mathrm{y}_{\mathrm{i}}\right) \mathrm{x}_{\mathrm{ij}}$ for all instances, multiple times

SVM

- Linear binary classifier (not probabilistic)
- Extension of linear classifiers to model non-linear decision boundaries
- Transformation of the feature space using synthetic features of higher order
$y^{\prime}=w_{0}+w_{1} x_{1}+w_{2} x_{2} \quad+w_{3} x_{1}^{2}+w_{4} x_{2}^{2}+w_{5} x_{1} x_{2}$
- But this brings problems
- Computational complexity (a lot more parameters to learn, transformation operations)
- Overfitting
- SVM algorithm deals with these (max. margin \& SV, kernel trick \& SV)

SVM - max. margin

- Model (linear, hyperplane) for separation of data by using the maximal margin principle (MAX: robustness, SV: stability)

$$
\begin{gathered}
\bar{W} \cdot \bar{X}+b=0 \\
\bar{W} \cdot \overline{X_{i}}+b \geq 0 \quad \forall i: y_{i}=+1 \\
\bar{W} \cdot \overline{X_{i}}+b \leq 0 \quad \forall i: y_{i}=-1
\end{gathered}
$$

- Learning: maximal margin (optimal hyperplane) optimization problem
- Soft margin to allow misclassifications
- Distance on the wrong side: ξ_{i}
- Parameter C (misclassification cost) - set with experimentation!
- Penalty: $C \cdot \xi_{i}^{r}$

SVM - kernel trick

- Use of higher dimensions for linearly non-separable data
- https://www.youtube.com/watch?v=3liCbRZPrZA
- Learning (optimization) involves dot products in the term to maximize:

$$
L_{D}=\sum_{i=1}^{n} \lambda_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_{i} \lambda_{j} y_{i} y_{j} \overline{X_{i}} \cdot \overline{X_{j}}
$$

Dot product of training data points is needed, (not feature values)
~similarity
classification too:
We can avoid representing W

$$
F(\bar{Z})=\operatorname{sign}\{\bar{W} \cdot \bar{Z}+b\}=\operatorname{sign}\left\{\left(\sum_{i=1}^{n} \lambda_{i} y_{i} \overline{X_{i}} \cdot \bar{Z}\right)+b\right\}
$$

SVM - kernel trick, here it is

- We do not need the feature values, just dot products
- Transformation to another (higher dimensional) feature space would mean:
$\Phi\left(\mathrm{x}_{\mathrm{i}}\right) \cdot \Phi\left(\mathrm{x}_{\mathrm{i}}\right)$
calculation of transformations, then the lengthy dot products...
- Instead, we can use a function such that: $\mathrm{K}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right)=\Phi\left(\mathrm{x}_{\mathrm{i}}\right) \cdot \Phi\left(\mathrm{x}_{\mathrm{i}}\right)$
- And $K\left(x_{i}, x_{j}\right)$ is in original space!
- EXAMPLE!
- We can only calculate kernels (polynomial, Gaussian RBF, ...)
- Simetric, positive semi-definite; similarity ; even for strings, graphs
- The mapping Φ can now be only implicitly used

